News

Study puts spin into quantum technologies

A team of international scientists investigating how to control the spin of atom-like impurities in 2D materials have observed the dependence of the atom’s energy on an external magnetic field for the first time.

The results of the study, published in Nature Materials, will be of interest to both academic and industry research groups working on the development of future quantum applications, the researchers say.

Researchers led by Prof Vladimir Dyakonov at the University of Würzburg in collaboration with scientists from the University of Technology Sydney (UTS), the Kazan Federal University and the Universidade Federal de Minas Gerais, demonstrated the ability to control the spin of atom-like impurities in 2D material hexagonal boron-nitride. By combining laser and microwave excitation the researchers were able to change the spin states, for example “up” to “down”, of atom-like impurities hosted in the material and show the dependence of their energy on an external magnetic field.

This is the first time that the phenomenon has been observed in a material that is made of a single sheet of atoms like graphene. The researchers say that this newly demonstrated quantum spin-optical properties, combined with the ease of integrating with other 2D materials and devices, establishes hexagonal boron-nitride as an intriguing candidate for advanced quantum technology hardware.

“2D atomic crystals are currently some of the most studied materials in condensed matter physics and materials science,” says UTS physicist Dr Mehran Kianinia, a co-author of the study.

“Their physics is intriguing from a fundamental point of view, but beyond that, we can think of stacking different 2D crystals to create completely new materials, heterostructures and devices with specific designer properties,” he says.

UTS researcher, Dr Carlo Bradac, a senior co-author of the study says that in addition to adding another unique property, to an already impressive range of properties for a 2D material, the discovery has enormous potential for the field of quantum sensing.

“What really excites me is the potential [in the context of quantum sensing]. These spins are sensitive to their immediate surroundings. Unlike 3D solids, where the atom-like system can be as far as a few nanometres from the object to sense, here the controllable spin is right at the surface. Our hope is to use these individual spins as tiny sensors and map, with unprecedented spatial resolution, variations in temperature, as well as magnetic and electric fields onto variations in spin” Dr Bradac says.

“Imagine, for instance, being able to measure minuscule magnetic fields with sensors as small as single atoms. The possibilities are far reaching and range from nuclear magnetic resonance spectroscopy for nanoscale medical diagnostic and material chemistry to GPS-free navigation using the Earth’s magnetic field,” he says.

However quantum-based nanoscale magnetometry is “just one area where controlling single spins in solids is useful” says senior author of the study UTS Professor Igor Aharonovich.

“Beyond quantum sensing, many quantum computing and quantum communication applications rely on our ability to control the spin-state–zero, one and anything in between–of single atom-like systems in solid host materials. This allows us to encode, store and transfer information in the form of quantum bits or qubits,” he says.

Amongst many others, this research highlights how scientists are quickly becoming masters in the craft of manipulating objects in the quantum regime. In fact, achievements like Lockheed Martin’s Black Ice project and Google’s quantum supremacy are proof that we are striding away from mere proof-of-concept experiments towards real world, quantum-enabled solutions to practical problems.

Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature

Andreas Gottscholl, Mehran Kianinia, Victor Soltamov, Sergei Orlinskii, Georgy Mamin, Carlo Bradac, Christian Kasper, Klaus Krambrock, Andreas Sperlich, Milos Toth, Igor Aharonovich & Vladimir Dyakonov

Nature Materials, 24th February 2020

Optically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN). We identify fluorescence lines associated with a particular defect, the negatively charged boron vacancy (VBVB−), showing a triplet (S = 1) ground state and zero-field splitting of ~3.5 GHz. We establish that this centre exhibits optically detected magnetic resonance at room temperature and demonstrate its spin polarization under optical pumping, which leads to optically induced population inversion of the spin ground state—a prerequisite for coherent spin-manipulation schemes. Our results constitute a step forward in establishing 2D hBN as a prime platform for scalable quantum technologies, with potential for spin-based quantum information and sensing applications.

About the author/s

Mehran Kianinia

Mehran is currently vice chancellor research fellow at UTS, following his research in quantum optics and quantum technologies. Previously he held a postdoctoral and research position with the quantum optics group at UTS and TMOS Center of Excellence. He conducted unique experiments on quantum emitte ... more

Igor Aharonovich

Igor Aharonovich received his B.Sc (2005) and M.Sc (2007) in Materials Eng from the Technion – Israel Institute of Technology under the supervision of Prof Yeshayahu Lifshitz. He then moved to Australia and pursued his PhD studies at the University of Melbourne under the supervision of Prof Steven ... more